Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
JACC Basic Transl Sci ; 9(1): 100-116, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38362348

RESUMEN

Endothelial cells play a critical role during venous thrombus remodeling, and unresolved, fibrotic thrombi with irregular vessels obstruct the pulmonary artery in patients with chronic thromboembolic pulmonary hypertension (CTEPH). This study sought to identify endothelial mediators of impaired venous thrombus resolution and to determine their role in the pathogenesis of the vascular obstructions in patients with CTEPH. Endothelial cells outgrown from pulmonary endarterectomy specimens (PEA) were processed for mRNA profiling, and nCounter gene expression and immunohistochemistry analysis of PEA tissue microarrays and immunoassays of plasma were used to validate the expression in CTEPH. Lentiviral overexpression in human pulmonary artery endothelial cells (HPAECs) and exogenous administration of the recombinant protein into C57BL/6J mice after inferior Vena cava ligation were employed to assess their role for venous thrombus resolution. RT2 PCR profiler analysis demonstrated the significant overexpression of factors downstream of transforming growth factor beta (TGFß), that is TGFß-Induced Protein (TGFBI or BIGH3) and transgelin (TAGLN), or involved in TGFß signaling, that is follistatin-like 3 (FSTL3) and stanniocalcin-2 (STC2). Gene expression and immunohistochemistry analysis of tissue microarrays localized potential disease candidates to vessel-rich regions. Lentiviral overexpression of TGFBI in HPAECs increased fibrotic remodeling of human blood clots in vitro, and exogenous administration of recombinant TGFBI in mice delayed venous thrombus resolution. Significantly elevated plasma TGFBI levels were observed in patients with CTEPH and decreased after PEA. Our findings suggest that overexpression of TGFBI in endothelial promotes venous thrombus non-resolution and fibrosis and is causally involved in the pathophysiology of CTEPH.

2.
Blood ; 143(12): 1167-1180, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38142429

RESUMEN

ABSTRACT: Antiphospholipid antibodies (aPL) in primary or secondary antiphospholipid syndrome (APS) are a major cause for acquired thrombophilia, but specific interventions preventing autoimmune aPL development are an unmet clinical need. Although autoimmune aPL cross react with various coagulation regulatory proteins, lipid-reactive aPL, including those derived from patients with COVID-19, recognize the endolysosomal phospholipid lysobisphosphatidic acid presented by the cell surface-expressed endothelial protein C receptor. This specific recognition leads to complement-mediated activation of tissue factor (TF)-dependent proinflammatory signaling and thrombosis. Here, we show that specific inhibition of the TF coagulation initiation complex with nematode anticoagulant protein c2 (NAPc2) prevents the prothrombotic effects of aPL derived from patients with COVID-19 in mice and the aPL-induced proinflammatory and prothrombotic activation of monocytes. The induction of experimental APS is dependent on the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex, and NAPc2 suppresses monocyte endosomal reactive oxygen species production requiring the TF cytoplasmic domain and interferon-α secretion from dendritic cells. Latent infection with murine cytomegalovirus causes TF cytoplasmic domain-dependent development of persistent aPL and circulating phospholipid-reactive B1 cells, which is prevented by short-term intervention with NAPc2 during acute viral infection. In addition, treatment of lupus prone MRL-lpr mice with NAPc2, but not with heparin, suppresses dendritic-cell activation in the spleen, aPL production and circulating phospholipid-reactive B1 cells, and attenuates lupus pathology. These data demonstrate a convergent TF-dependent mechanism of aPL development in latent viral infection and autoimmune disease and provide initial evidence that specific targeting of the TF initiation complex has therapeutic benefits beyond currently used clinical anticoagulant strategies.


Asunto(s)
Síndrome Antifosfolípido , COVID-19 , Virosis , Humanos , Animales , Ratones , Anticuerpos Antifosfolípidos , Tromboplastina/metabolismo , Ratones Endogámicos MRL lpr , Síndrome Antifosfolípido/complicaciones , Fosfolípidos , Anticoagulantes , COVID-19/complicaciones , Virosis/complicaciones
3.
Int J Mol Sci ; 23(14)2022 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-35887223

RESUMEN

The high mortality in men with metastatic prostate cancer (PC) establishes the need for diagnostic optimization by new biomarkers. Mindful of the effect of real microgravity on metabolic pathways of carcinogenesis, we attended a parabolic flight (PF) mission to perform an experiment with the PC cell line PC-3, and submitted the resulting RNA to next generation sequencing (NGS) and quantitative real-time PCR (qPCR). After the first parabola, alterations of the F-actin cytoskeleton-like stress fibers and pseudopodia are visible. Moreover, numerous significant transcriptional changes are evident. We were able to identify a network of relevant PC cytokines and chemokines showing differential expression due to gravitational changes, particularly during the early flight phases. Together with differentially expressed regulatory lncRNAs and micro RNAs, we present a portfolio of 298 potential biomarkers. Via qPCR we identified IL6 and PIK3CB to be sensitive to vibration effects and hypergravity, respectively. Per NGS we detected five upregulated cytokines (CCL2, CXCL1, IL6, CXCL2, CCL20), one zink finger protein (TNFAIP3) and one glycoprotein (ICAM1) related to c-REL signaling and thus relevant for carcinogenesis as well as inflammatory aspects. We found regulated miR-221 and the co-localized lncRNA MIR222HG induced by PF maneuvers. miR-221 is related to the PC-3 growth rate and MIR222HG is a known risk factor for glioma susceptibility. These findings in real microgravity may further improve our understanding of PC and contribute to the development of new diagnostic tools.


Asunto(s)
MicroARNs , Neoplasias de la Próstata , Vuelo Espacial , Ingravidez , Carcinogénesis , Citocinas/genética , Humanos , Interleucina-6 , Masculino , MicroARNs/genética , Neoplasias de la Próstata/genética
4.
Sci Rep ; 12(1): 5108, 2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35332188

RESUMEN

In humans and mice, L-arginine:glycine amidinotransferase (AGAT) and its metabolites homoarginine (hArg) and creatine have been linked to cardiovascular disease (CVD), specifically myocardial infarction (MI) and heart failure (HF). The underlying molecular and regulatory mechanisms, however, remain unclear. To identify potential pathways of cardiac AGAT metabolism, we sequenced microRNA (miRNA) in left ventricles of wild-type (wt) compared to AGAT-deficient (AGAT-/-) mice. Using literature search and validation by qPCR, we identified eight significantly regulated miRNAs in AGAT-/- mice linked to atherosclerosis, MI and HF: miR-30b, miR-31, miR-130a, miR-135a, miR-148a, miR-204, miR-298, and let-7i. Analysis of Gene Expression Omnibus (GEO) data confirmed deregulation of these miRNAs in mouse models of MI and HF. Quantification of miRNA expression by qPCR in AGAT-/- mice supplemented with creatine or hArg revealed that miR-30b, miR-31, miR-130a, miR-148a, and miR-204 were regulated by creatine, while miR-135a and miR-298 showed a trend of regulation by hArg. Finally, bioinformatics-based target prediction showed that numerous AGAT-dependent genes previously linked to CVD are likely to be regulated by the identified miRNAs. Taken together, AGAT deficiency and hArg/creatine supplementation are associated with cardiac miRNA expression which may influence cardiac (dys)function and CVD.


Asunto(s)
Insuficiencia Cardíaca , MicroARNs , Infarto del Miocardio , Amidinotransferasas , Animales , Arginina/metabolismo , Creatina/metabolismo , Homoarginina/metabolismo , Ratones , MicroARNs/genética , Infarto del Miocardio/genética
5.
Nat Commun ; 13(1): 1018, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35197461

RESUMEN

The antiviral immune response to SARS-CoV-2 infection can limit viral spread and prevent development of pneumonic COVID-19. However, the protective immunological response associated with successful viral containment in the upper airways remains unclear. Here, we combine a multi-omics approach with longitudinal sampling to reveal temporally resolved protective immune signatures in non-pneumonic and ambulatory SARS-CoV-2 infected patients and associate specific immune trajectories with upper airway viral containment. We see a distinct systemic rather than local immune state associated with viral containment, characterized by interferon stimulated gene (ISG) upregulation across circulating immune cell subsets in non-pneumonic SARS-CoV2 infection. We report reduced cytotoxic potential of Natural Killer (NK) and T cells, and an immune-modulatory monocyte phenotype associated with protective immunity in COVID-19. Together, we show protective immune trajectories in SARS-CoV2 infection, which have important implications for patient prognosis and the development of immunomodulatory therapies.


Asunto(s)
COVID-19/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Atención Ambulatoria , Citocinas/sangre , Femenino , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Interferones/inmunología , Células Asesinas Naturales/inmunología , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Monocitos/inmunología , Nasofaringe/inmunología , Nasofaringe/virología , SARS-CoV-2/fisiología , Linfocitos T/inmunología
6.
Biomolecules ; 11(11)2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34827683

RESUMEN

Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide. Non-coding RNAs have already been linked to CVD development and progression. While microRNAs (miRs) have been well studied in blood samples, there is little data on tissue-specific miRs in cardiovascular relevant tissues and their relation to cardiovascular risk factors. Tissue-specific miRs derived from Arteria mammaria interna (IMA) from 192 coronary artery disease (CAD) patients undergoing coronary artery bypass grafting (CABG) were analyzed. The aims of the study were 1) to establish a reference atlas which can be utilized for identification of novel diagnostic biomarkers and potential therapeutic targets, and 2) to relate these miRs to cardiovascular risk factors. Overall, 393 individual miRs showed sufficient expression levels and passed quality control for further analysis. We identified 17 miRs-miR-10b-3p, miR-10-5p, miR-17-3p, miR-21-5p, miR-151a-5p, miR-181a-5p, miR-185-5p, miR-194-5p, miR-199a-3p, miR-199b-3p, miR-212-3p, miR-363-3p, miR-548d-5p, miR-744-5p, miR-3117-3p, miR-5683 and miR-5701-significantly correlated with cardiovascular risk factors (correlation coefficient >0.2 in both directions, p-value (p < 0.006, false discovery rate (FDR) <0.05). Of particular interest, miR-5701 was positively correlated with hypertension, hypercholesterolemia, and diabetes. In addition, we found that miR-629-5p and miR-98-5p were significantly correlated with acute myocardial infarction. We provide a first atlas of miR profiles in IMA samples from CAD patients. In perspective, these miRs might play an important role in improved risk assessment, mechanistic disease understanding and local therapy of CAD.


Asunto(s)
Enfermedad de la Arteria Coronaria , Diabetes Mellitus , Corazón , Humanos , MicroARNs , Factores de Riesgo
7.
JCI Insight ; 6(18)2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34403366

RESUMEN

Neutrophils provide a critical line of defense in immune responses to various pathogens, inflicting self-damage upon transition to a hyperactivated, procoagulant state. Recent work has highlighted proinflammatory neutrophil phenotypes contributing to lung injury and acute respiratory distress syndrome (ARDS) in patients with coronavirus disease 2019 (COVID-19). Here, we use state-of-the art mass spectrometry-based proteomics and transcriptomic and correlative analyses as well as functional in vitro and in vivo studies to dissect how neutrophils contribute to the progression to severe COVID-19. We identify a reinforcing loop of both systemic and neutrophil intrinsic IL-8 (CXCL8/IL-8) dysregulation, which initiates and perpetuates neutrophil-driven immunopathology. This positive feedback loop of systemic and neutrophil autocrine IL-8 production leads to an activated, prothrombotic neutrophil phenotype characterized by degranulation and neutrophil extracellular trap (NET) formation. In severe COVID-19, neutrophils directly initiate the coagulation and complement cascade, highlighting a link to the immunothrombotic state observed in these patients. Targeting the IL-8-CXCR-1/-2 axis interferes with this vicious cycle and attenuates neutrophil activation, degranulation, NETosis, and IL-8 release. Finally, we show that blocking IL-8-like signaling reduces severe acute respiratory distress syndrome of coronavirus 2 (SARS-CoV-2) spike protein-induced, human ACE2-dependent pulmonary microthrombosis in mice. In summary, our data provide comprehensive insights into the activation mechanisms of neutrophils in COVID-19 and uncover a self-sustaining neutrophil-IL-8 axis as a promising therapeutic target in severe SARS-CoV-2 infection.


Asunto(s)
COVID-19/metabolismo , Interleucina-8/metabolismo , Pulmón/inmunología , Neutrófilos/inmunología , SARS-CoV-2 , Trombosis/etiología , Animales , COVID-19/complicaciones , COVID-19/patología , Humanos , Pulmón/patología , Ratones , Activación Neutrófila , Neutrófilos/patología , Fenotipo , Trombosis/patología
8.
Prog Biophys Mol Biol ; 159: 86-104, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32738354

RESUMEN

AIMS: After summarizing current concepts for the role of TRPC cation channels in cardiac cells and in processes triggered by mechanical stimuli arising e.g. during pressure overload, we analysed the role of TRPC1 and TRPC4 for background Ca2+ entry (BGCE) and for cardiac pressure overload induced transcriptional remodelling. METHODS AND RESULTS: Mn2+-quench analysis in cardiomyocytes from several Trpc-deficient mice revealed that both TRPC1 and TRPC4 are required for BGCE. Electrically-evoked cell shortening of cardiomyocytes from TRPC1/C4-DKO mice was reduced, whereas parameters of cardiac contractility and relaxation assessed in vivo were unaltered. As pathological cardiac remodelling in mice depends on their genetic background, and the development of cardiac remodelling was found to be reduced in TRPC1/C4-DKO mice on a mixed genetic background, we studied TRPC1/C4-DKO mice on a C57BL6/N genetic background. Cardiac hypertrophy was reduced in those mice after chronic isoproterenol infusion (-51.4%) or after one week of transverse aortic constriction (TAC; -73.0%). This last manoeuvre was preceded by changes in the pressure overload induced transcriptional program as analysed by RNA sequencing. Genes encoding specific collagens, the Mef2 target myomaxin and the gene encoding the mechanosensitive channel Piezo2 were up-regulated after TAC in wild type but not in TRPC1/C4-DKO hearts. CONCLUSIONS: Deletion of the TRPC1 and TRPC4 channel proteins protects against development of pathological cardiac hypertrophy independently of the genetic background. To determine if the TRPC1/C4-dependent changes in the pressure overload induced alterations in the transcriptional program causally contribute to cardio-protection needs to be elaborated in future studies.


Asunto(s)
Calcio/metabolismo , Miocitos Cardíacos/metabolismo , Canales Catiónicos TRPC/metabolismo , Remodelación Ventricular/fisiología , Animales , Fenómenos Biomecánicos/fisiología , Señalización del Calcio , Cardiomegalia/metabolismo , Regulación de la Expresión Génica , Humanos , Canales Iónicos/genética , Canales Iónicos/metabolismo , Masculino , Ratones , Ratones Noqueados , Activación Transcripcional/fisiología
9.
Sci Rep ; 10(1): 6684, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32317713

RESUMEN

Impulsivity describes the tendency to act prematurely without appropriate foresight and is symptomatic of a number of neuropsychiatric disorders. Although a number of genes for impulsivity have been identified, no study to date has carried out an unbiased, genome-wide approach to identify genetic markers associated with impulsivity in experimental animals. Herein we report a linkage study of a six-generational pedigree of adult rats phenotyped for one dimension of impulsivity, namely premature responding on the five-choice serial reaction time task, combined with genome wide sequencing and transcriptome analysis to identify candidate genes associated with the expression of the impulsivity trait. Premature responding was found to be heritable (h2 = 13-16%), with significant linkage (LOD 5.2) identified on chromosome 1. Fine mapping of this locus identified a number of polymorphic candidate genes, however only one, beta haemoglobin, was differentially expressed in both the founder strain and F6 generation. These findings provide novel insights into the genetic substrates and putative neurobiological mechanisms of impulsivity with broader translational relevance for impulsivity-related disorders in humans.


Asunto(s)
Cromosomas de los Mamíferos/genética , Conducta Impulsiva/fisiología , Sitios de Carácter Cuantitativo/genética , Carácter Cuantitativo Heredable , Animales , Femenino , Regulación de la Expresión Génica , Ligamiento Genético , Genoma , Masculino , Linaje , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Análisis y Desempeño de Tareas
10.
Sci Rep ; 10(1): 2158, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32034223

RESUMEN

Statin-related muscle side effects are a constant healthcare problem since patient compliance is dependent on side effects. Statins reduce plasma cholesterol levels and can prevent secondary cardiovascular diseases. Although statin-induced muscle damage has been studied, preventive or curative therapies are yet to be reported. We exposed primary human muscle cell populations (n = 22) to a lipophilic (simvastatin) and a hydrophilic (rosuvastatin) statin and analyzed their expressome. Data and pathway analyses included GOrilla, Reactome and DAVID. We measured mevalonate intracellularly and analyzed eicosanoid profiles secreted by human muscle cells. Functional assays included proliferation and differentiation quantification. More than 1800 transcripts and 900 proteins were differentially expressed after exposure to statins. Simvastatin had a stronger effect on the expressome than rosuvastatin, but both statins influenced cholesterol biosynthesis, fatty acid metabolism, eicosanoid synthesis, proliferation, and differentiation of human muscle cells. Cultured human muscle cells secreted ω-3 and ω-6 derived eicosanoids and prostaglandins. The ω-6 derived metabolites were found at higher levels secreted from simvastatin-treated primary human muscle cells. Eicosanoids rescued muscle cell differentiation. Our data suggest a new aspect on the role of skeletal muscle in cholesterol metabolism. For clinical practice, the addition of omega-n fatty acids might be suitable to prevent or treat statin-myopathy.


Asunto(s)
Anticolesterolemiantes/farmacología , Dinoprost/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Rosuvastatina Cálcica/farmacología , Simvastatina/farmacología , Transcriptoma , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Dinoprost/farmacología , Humanos , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo
11.
Proc Natl Acad Sci U S A ; 117(3): 1753-1761, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31896584

RESUMEN

Carbon dioxide (CO2), the major product of metabolism, has a strong impact on cerebral blood vessels, a phenomenon known as cerebrovascular reactivity. Several vascular risk factors such as hypertension or diabetes dampen this response, making cerebrovascular reactivity a useful diagnostic marker for incipient vascular pathology, but its functional relevance, if any, is still unclear. Here, we found that GPR4, an endothelial H+ receptor, and endothelial Gαq/11 proteins mediate the CO2/H+ effect on cerebrovascular reactivity in mice. CO2/H+ leads to constriction of vessels in the brainstem area that controls respiration. The consequential washout of CO2, if cerebrovascular reactivity is impaired, reduces respiration. In contrast, CO2 dilates vessels in other brain areas such as the amygdala. Hence, an impaired cerebrovascular reactivity amplifies the CO2 effect on anxiety. Even at atmospheric CO2 concentrations, impaired cerebrovascular reactivity caused longer apneic episodes and more anxiety, indicating that cerebrovascular reactivity is essential for normal brain function. The site-specific reactivity of vessels to CO2 is reflected by regional differences in their gene expression and the release of vasoactive factors from endothelial cells. Our data suggest the central nervous system (CNS) endothelium as a target to treat respiratory and affective disorders associated with vascular diseases.


Asunto(s)
Ansiedad/metabolismo , Sistema Cardiovascular/metabolismo , Endotelio/metabolismo , Trastornos Respiratorios/metabolismo , Amígdala del Cerebelo , Animales , Arteriolas/patología , Encéfalo/fisiología , Tronco Encefálico/metabolismo , Dióxido de Carbono/metabolismo , Sistema Nervioso Central/metabolismo , Modelos Animales de Enfermedad , Endotelio/patología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Expresión Génica , Humanos , Hipercapnia/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Respiración , Factores de Riesgo , Transducción de Señal
12.
J Endocrinol ; 244(1): 95-110, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31585441

RESUMEN

The AT1 receptor blocker telmisartan (TEL) prevents diet-induced obesity. Hypothalamic lipid metabolism is functionally important for energy homeostasis, as a surplus of lipids induces an inflammatory response in the hypothalamus, thus promoting the development of central leptin resistance. However, it is unclear as to whether TEL treatment affects the lipid status in the hypothalamus. C57BL/6N mice were fed with chow (CONchow) or high-fat diet (CONHFD). HFD-fed mice were gavaged with TEL (8 mg/kg/day, 12 weeks, TELHFD). Mice were phenotyped regarding weight gain, energy homeostasis, and glucose control. Hypothalamic lipid droplets were analyzed by fluorescence microscopy. Lipidomics were assessed by performing liquid chromatography-mass spectrometry in plasma and hypothalami. Adipokines were investigated using immunosorbent assays. Glial fibrillary acidic protein (GFAP) was determined by Western blotting and immunohistochemical imaging. We found that body weight, energy homeostasis, and glucose control of TEL-treated mice remained normal while CONHFD became obese. Hypothalamic ceramide and triglyceride levels as well as alkyne oleate distribution were normalized in TELHFD. The lipid droplet signal in the tanycyte layer was higher in CONHFD than in CONchow and returned to normal under TELHFD conditions. High hypothalamic levels of GFAP protein indicate astrogliosis of CONHFD mice while normalized GFAP, TNFα, and IL1α levels of TELHFD mice suggest that TEL prevents hypothalamic inflammation. In conclusion, TEL has anti-obese efficacy and prevented lipid accumulation and lipotoxicity, which is accompanied by an anti-inflammatory effect in the murine hypothalamus. Our findings support the notion that a brain-related mechanism is involved in TEL-induced weight loss.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II/administración & dosificación , Gotas Lipídicas/efectos de los fármacos , Obesidad/prevención & control , Telmisartán/administración & dosificación , Aumento de Peso/efectos de los fármacos , Alimentación Animal , Animales , Dieta Alta en Grasa/efectos adversos , Hipotálamo/metabolismo , Leptina/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología
13.
Pflugers Arch ; 470(11): 1673-1689, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29978352

RESUMEN

Obesity is a global health problem and treatment options are still insufficient. When chronically treated with the angiotensin II receptor blocker telmisartan (TEL), rodents do not develop diet-induced obesity (DIO). However, the underlying mechanism for this is still unclear. Here we investigated whether TEL prevents leptin resistance by enhancing leptin uptake across the blood-brain barrier (BBB). To address this question, we fed C57BL/6 mice a high-fat diet (HFD) and treated them daily with TEL by oral gavage. In addition to broadly characterizing the metabolism of leptin, we determined leptin uptake into the brain by measuring BBB transport of radioactively labeled leptin after long-term and short-term TEL treatment. Additionally, we assessed BBB integrity in response to angiotensin II in vitro and in vivo. We found that HFD markedly increased body weight, energy intake, and leptin concentration but that this effect was abolished under TEL treatment. Furthermore, glucose control and, most importantly, leptin uptake across the BBB were impaired in mice on HFD, but, again, both were preserved under TEL treatment. BBB integrity was not impaired due to angiotensin II or blocking of angiotensin II receptors. However, TEL did not exhibit an acute effect on leptin uptake across the BBB. Our results confirm that TEL prevents DIO and show that TEL preserves leptin transport and thereby prevents leptin resistance. We conclude that the preservation of leptin sensitivity is, however, more a consequence than the cause of TEL preventing body weight gain.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II/uso terapéutico , Fármacos Antiobesidad/uso terapéutico , Barrera Hematoencefálica/metabolismo , Leptina/metabolismo , Obesidad/tratamiento farmacológico , Telmisartán/uso terapéutico , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Fármacos Antiobesidad/farmacología , Barrera Hematoencefálica/efectos de los fármacos , Peso Corporal , Línea Celular , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/metabolismo , Telmisartán/farmacología
14.
Sci Rep ; 8(1): 10355, 2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29985426

RESUMEN

Human follicular thyroid cancer cells (FTC-133) were sent to space via a sounding rocket during the TEXUS-53 mission to determine the impact of short-term microgravity on these cells. To enable cell culture and fixation in real microgravity, an automated experiment container (EC) was constructed. In order to ensure safe cell culture, cell-chambers consisting of polycarbonate (PC) material were used. They were highly biocompatible as proved by measuring cell survival using Annexin V flow cytometry. In the follow-up experiment, FTC-133 cells were sent to space via a sounding rocket and were fixed before and after the microgravity (µg) phase with RNAlater. In addition, cells were tested for reactions on hypergravity (hyper-g) as much as 18 g to determine whether worst case acceleration during launch can have an influence on the cells. We investigated genes belonging to biological processes such as cytoskeleton, cell adhesion, tumor growth, angiogenesis and apoptosis. Pathway analyses revealed central functions of VEGFA and EGF. EGF upregulates aspartate beta-hydroxylase (ASPH) which is influencing CASP3. Hyper-g induced a significant up-regulation of TUBB1, VIM, RDX, CAV1, VEGFA and BCL2. FTC-133 cells grown in an automated EC exposed to µg revealed moderate gene expression changes indicating their survival in orbit.


Asunto(s)
Expresión Génica , Hipergravedad , Ingravidez , Materiales Biocompatibles/química , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Línea Celular Tumoral , Citoesqueleto/genética , Regulación hacia Abajo , Factor de Crecimiento Epidérmico/metabolismo , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Vuelo Espacial , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patología , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo
15.
Cell Physiol Biochem ; 47(4): 1729-1741, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29949789

RESUMEN

BACKGROUND/AIMS: Spaceflight negatively influences the function of cartilage tissue in vivo. In vitro human chondrocytes exhibit an altered gene expression of inflammation markers after a two-hour exposure to vibration. Little is known about the impact of long-term vibration on chondrocytes. METHODS: Human cartilage cells were exposed for up to 24 h (VIB) on a specialised vibration platform (Vibraplex) simulating the vibration profile which occurs during parabolic flights and compared to static control conditions (CON). Afterwards, they were investigated by phase-contrast microscopy, rhodamine phalloidin staining, microarray analysis, qPCR and western blot analysis. RESULTS: Morphological investigations revealed no changes between CON and VIB chondrocytes. F-Actin staining showed no alterations of the cytoskeleton in VIB compared with CON cells. DAPI and TUNEL staining did not identify apoptotic cells. ICAM-1 was elevated and vimentin, beta-tubulin and osteopontin proteins were significantly reduced in VIB compared to CON cells. qPCR of cytoskeletal genes, ITGB1, SOX3, SOX5, SOX9 did not reveal differential regulations. Microarray analysis detected 13 differentially expressed genes, mostly indicating unspecific stimulations. Pathway analyses demonstrated interactions of PSMD4 and CNOT7 with ICAM. CONCLUSIONS: Long-term vibration did not damage human chondrocytes in vitro. The reduction of osteopontin protein and the down-regulation of PSMD4 and TBX15 gene expression suggest that in vitro long-term vibration might even positively influence cultured chondrocytes.


Asunto(s)
Apoptosis , Condrocitos/metabolismo , Regulación de la Expresión Génica , Complejo de la Endopetidasa Proteasomal/biosíntesis , Proteínas de Dominio T Box/biosíntesis , Factores de Transcripción/biosíntesis , Vibración , Células Cultivadas , Condrocitos/citología , Exorribonucleasas , Humanos , Proteínas de Unión al ARN , Proteínas Represoras , Factores de Tiempo
16.
PLoS One ; 13(3): e0194293, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29529077

RESUMEN

Acute stress responsiveness is a quantitative trait that varies in severity from one individual to another; however, the genetic component underlying the individual variation is largely unknown. Fischer 344 (F344) and Wistar Kyoto (WKY) rat strains show large differences in behavioral responsiveness to acute stress, such as freezing behavior in response to footshock during the conditioning phase of contextual fear conditioning (CFC). Quantitative trait loci (QTL) have been identified for behavioral responsiveness to acute stress in the defensive burying (DB) and open field test (OFT) from a reciprocal F2 cross of F344 and WKY rat strains. These included a significant QTL on chromosome 6 (Stresp10). Here, we hypothesized that the Stresp10 region harbors genes with sequence variation(s) that contribute to differences in multiple behavioral response phenotypes between the F344 and WKY rat strains. To test this hypothesis, first we identified differentially expressed genes within the Stresp10 QTL in the hippocampus, amygdala, and frontal cortex of F344 and WKY male rats using genome-wide microarray analyses. Genes with both expression differences and non-synonymous sequence variations in their coding regions were considered candidate quantitative trait genes (QTGs). As a proof-of-concept, the F344.WKY-Stresp10 congenic strain was generated with the Stresp10 WKY donor region into the F344 recipient strain. This congenic strain showed behavioral phenotypes similar to those of WKYs. Expression patterns of Gpatch11 (G-patch domain containing 11), Cdkl4 (Cyclin dependent kinase like 4), and Drc1 (Dynein regulatory complex subunit 1) paralleled that of WKY in the F344.WKY-Stresp10 strain matching the behavioral profiles of WKY as opposed to F344 parental strains. We propose that these genes are candidate QTGs for behavioral responsiveness to acute stress.


Asunto(s)
Conducta Animal , Mapeo Encefálico , Encéfalo/fisiología , Perfilación de la Expresión Génica , Estudios de Asociación Genética , Sitios de Carácter Cuantitativo , Estrés Fisiológico/genética , Animales , Mapeo Encefálico/métodos , Mapeo Cromosómico , Masculino , Sistemas de Lectura Abierta , Fenotipo , Polimorfismo de Nucleótido Simple , Ratas , Ratas Endogámicas F344 , Ratas Endogámicas WKY , Factores Sexuales
17.
Sci Rep ; 8(1): 921, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29343717

RESUMEN

Human MCF-7 breast cancer cells were exposed to a Random Positioning Machine (RPM). After 24 hours (h) the cells grew either adherently within a monolayer (AD) or within multicellular spheroids (MCS). AD and MCS populations were separately harvested, their cellular differences were determined performing qPCR on genes, which were differently expressed in AD and MCS cells. Gene array technology was applied to detect RPM-sensitive genes in MCF-7 cells after 24 h. Furthermore, the capability to form multicellular spheroids in vitro was compared with the intracellular distribution of NF-kappaB (NFκB) p65. NFκB was equally distributed in static control cells, but predominantly localized in the cytoplasm in AD cells and nucleus in MCS cells exposed to the RPM. Gene array analyses revealed a more than 2-fold change of only 23 genes including some whose products are affected by oxygen levels or regulate glycolysis. Significant upregulations of the mRNAs of enzymes degrading heme, of ANXA1, ANXA2, CTGF, CAV2 and ICAM1, as well as of FAS, Casp8, BAX, p53, CYC1 and PARP1 were observed in MCS cells as compared with 1g-control and AD cells. An interaction analysis of 47 investigated genes suggested that HMOX-1 and NFκB variants are activated, when multicellular spheroids are formed.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , FN-kappa B/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Técnicas de Cultivo de Célula/métodos , Línea Celular Tumoral , Femenino , Humanos , Células MCF-7 , ARN Mensajero/metabolismo , Transducción de Señal/fisiología , Factor de Transcripción ReIA/metabolismo , Regulación hacia Arriba/fisiología
18.
Nature ; 552(7683): 110-115, 2017 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-29160304

RESUMEN

Fibrosis is a common pathology in cardiovascular disease. In the heart, fibrosis causes mechanical and electrical dysfunction and in the kidney, it predicts the onset of renal failure. Transforming growth factor ß1 (TGFß1) is the principal pro-fibrotic factor, but its inhibition is associated with side effects due to its pleiotropic roles. We hypothesized that downstream effectors of TGFß1 in fibroblasts could be attractive therapeutic targets and lack upstream toxicity. Here we show, using integrated imaging-genomics analyses of primary human fibroblasts, that upregulation of interleukin-11 (IL-11) is the dominant transcriptional response to TGFß1 exposure and required for its pro-fibrotic effect. IL-11 and its receptor (IL11RA) are expressed specifically in fibroblasts, in which they drive non-canonical, ERK-dependent autocrine signalling that is required for fibrogenic protein synthesis. In mice, fibroblast-specific Il11 transgene expression or Il-11 injection causes heart and kidney fibrosis and organ failure, whereas genetic deletion of Il11ra1 protects against disease. Therefore, inhibition of IL-11 prevents fibroblast activation across organs and species in response to a range of important pro-fibrotic stimuli. These results reveal a central role of IL-11 in fibrosis and we propose that inhibition of IL-11 is a potential therapeutic strategy to treat fibrotic diseases.


Asunto(s)
Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/patología , Fibrosis/metabolismo , Fibrosis/patología , Interleucina-11/metabolismo , Animales , Comunicación Autocrina , Células Cultivadas , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis/inducido químicamente , Corazón , Humanos , Interleucina-11/antagonistas & inhibidores , Interleucina-11/genética , Subunidad alfa del Receptor de Interleucina-11/deficiencia , Subunidad alfa del Receptor de Interleucina-11/genética , Riñón/patología , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Miocardio/metabolismo , Miocardio/patología , Puntuaciones en la Disfunción de Órganos , Biosíntesis de Proteínas , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Transgenes/genética
19.
PLoS One ; 11(12): e0167984, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27936167

RESUMEN

The vast majority of patients with Nijmegen Breakage Syndrome (NBS) are of Slavic origin and carry a deleterious deletion (c.657del5; rs587776650) in the NBN gene on chromosome 8q21. This mutation is essentially confined to Slavic populations and may thus be considered a Slavic founder mutation. Notably, not a single parenthood of a homozygous c.657del5 carrier has been reported to date, while heterozygous carriers do reproduce but have an increased cancer risk. These observations seem to conflict with the considerable carrier frequency of c.657del5 of 0.5% to 1% as observed in different Slavic populations because deleterious mutations would be eliminated quite rapidly by purifying selection. Therefore, we propose that heterozygous c.657del5 carriers have increased reproductive success, i.e., that the mutation confers heterozygote advantage. In fact, in our cohort study of the reproductive history of 24 NBS pedigrees from the Czech Republic, we observed that female carriers gave birth to more children on average than female non-carriers, while no such reproductive differences were observed for males. We also estimate that c.657del5 likely occurred less than 300 generations ago, thus supporting the view that the original mutation predated the historic split and subsequent spread of the 'Slavic people'. We surmise that the higher fertility of female c.657del5 carriers reflects a lower miscarriage rate in these women, thereby reflecting the role of the NBN gene product, nibrin, in the repair of DNA double strand breaks and their processing in immune gene rearrangements, telomere maintenance, and meiotic recombination, akin to the previously described role of the DNA repair genes BRCA1 and BRCA2.


Asunto(s)
Proteínas de Ciclo Celular/genética , Efecto Fundador , Mutación , Síndrome de Nijmegen/genética , Proteínas Nucleares/genética , Reproducción/genética , Adulto , Estudios de Cohortes , República Checa , Daño del ADN , Reparación del ADN , Femenino , Tamización de Portadores Genéticos , Haplotipos , Humanos , Masculino , Persona de Mediana Edad , Síndrome de Nijmegen/etnología , Eslovaquia
20.
Stem Cells ; 34(3): 674-84, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26840599

RESUMEN

In much animal research, genetic variation is rather avoided than used as a powerful tool to identify key regulatory genes in complex phenotypes. Adult hippocampal neurogenesis is one such highly complex polygenic trait, for which the understanding of the molecular basis is fragmented and incomplete, and for which novel genetic approaches are needed. In this study, we aimed at marrying the power of the BXD panel, a mouse genetic reference population, with the flexibility of a cell culture model of adult neural precursor proliferation and differentiation. We established adult-derived hippocampal precursor cell cultures from 20 strains of the BXD panel, including the parental strains C57BL/6J and DBA/2J. The rates of cell proliferation and neuronal differentiation were measured, and transcriptional profiles were obtained from proliferating cultures. Together with the published genotypes of all lines, these data allowed a novel systems genetics analysis combining quantitative trait locus analysis with transcript expression correlation at a cellular level to identify genes linked with the differences in proliferation. In a proof-of-principle analysis, we identified Lrp6, the gene encoding the coreceptor to Frizzled in the Wnt pathway, as a potential negative regulator of precursor proliferation. Overexpression and siRNA silencing confirmed the regulatory role of Lrp6. As well as adding to our knowledge of the pathway surrounding Wnt in adult hippocampal neurogenesis, this finding allows the new appreciation of a negative regulator within this system. In addition, the resource and associated methodology will allow the integration of regulatory mechanisms at a systems level.


Asunto(s)
Diferenciación Celular/genética , Hipocampo/citología , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/biosíntesis , Neurogénesis/genética , Neuronas/citología , Animales , Técnicas de Cultivo de Célula , Proliferación Celular/genética , Regulación del Desarrollo de la Expresión Génica , Hipocampo/crecimiento & desarrollo , Hipocampo/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/genética , Ratones , Neuronas/metabolismo , ARN Interferente Pequeño/genética , Vía de Señalización Wnt/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...